Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
NPJ Sci Food ; 7(1): 59, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37914734

RESUMO

Anthocyanin (ACN) fortification of commonly consumed foods is significant as a dietary strategy against the development of metabolic complications by delivering ACNs at high doses. However, its bioactivity and translated metabolic effects in the presence of varying food matrices and macro-constituents is particularly unclear. This end-to-end study investigates the metabolic effects of black rice ACN extract (BRAE) fortification-from in-vitro enzyme inhibitory activities and digestibility, to downstream in vivo impacts on GI, postprandial glycemia and lipidemia. The in vivo effects were investigated in two separate crossover randomised controlled trials (RCT) of 24 healthy participants each-the first RCT determined the postprandial blood glucose, insulin, and ACN bioavailability to a starch-rich single food over 2 h, while the second RCT determined the postprandial blood glucose, insulin, lipid panel, and lipoprotein particles and subfractions to a starch- and fat-rich composite meal over 4 h. In-vitro findings confirmed the inhibitory activities of major black rice ACNs on carbohydrases (p = 0.0004), lipases (p = 0.0002), and starch digestibility (p < 0.0001). in vivo, a 27-point mean GI reduction of wheat bread was observed with BRAE fortification, despite a non-significant attenuation in postprandial glycemia. Conversely, there were no differences in postprandial glycemia when fortified bread was consumed as a composite meal, but acute lipid profiles were altered: (1) improved plasma HDL-c, ([0.0140 mmol/L, 95% CI: (0.00639, 0.0216)], p = 0.0028), Apo-A1 ([0.0296 mmol/L, 95% CI: (0.00757, 0.0515)], p = 0.0203), and Apo-B ([0.00880 mmol/L, 95% CI: (0.00243, 0.0152)], p = 0.0185), (2) modified LDL and HDL subfractions (p < 0.05), and (3) remodelled lipid distributions in HDL and LDL particles. This end-to-end study indicates the potential of ACN fortification in GI reduction and modulating postprandial lipoprotein profiles to starch- and fat-rich composite meals.

2.
Foods ; 12(4)2023 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-36832955

RESUMO

Anthocyanins reduce starch digestibility via carbohydrase-inhibitory pathways, but food matrix effects during digestion may also influence its enzymatic function. Understanding anthocyanin-food matrix interactions is significant as the efficiency of carbohydrase inhibition relies on anthocyanin accessibility during digestion. Therefore, we aimed to evaluate the influence of food matrices on black rice anthocyanin accessibility in relation to starch digestibility in common settings of anthocyanin consumption-its co-ingestion with food, and consumption of fortified food. Our findings indicate that black rice anthocyanin extracts (BRAE) had reduced intestinal digestibility of bread to a larger extent for the co-digestion of BRAE with bread (39.3%) (4CO), than BRAE-fortified bread (25.9%) (4FO). Overall anthocyanin accessibility was about 5% greater from the co-digestion with bread than fortified bread across all digestion phases. Differences in anthocyanin accessibility were also noted with changes to gastrointestinal pH and food matrix compositions-with up to 10.1% (oral to gastric) and 73.4% (gastric to intestinal) reductions in accessibility with pH changes, and 3.4% greater accessibility in protein matrices than starch matrices. Our findings demonstrate that the modulation of starch digestibility by anthocyanin is a combined result of its accessibility, food matrix composition, and gastrointestinal conditions.

3.
Food Chem ; 374: 131744, 2022 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-34915378

RESUMO

Several studies have confirmed the reduction of starch digestibility with anthocyanins in food systems via mechanisms of enzyme inhibition. However, starch-polyphenol interactions may also contribute to this reduction, by modifying food microstructures and physicochemical properties of starch. The interactions among anthocyanins, starch digestibility, and food microstructures are significant to clarify the digestion processes of fortified food systems, but its interrelationship lacks clarity. Hence, we aim to evaluate the effects of black rice anthocyanin extract (BRAE) incorporation on the microstructural changes of wheat bread, in relation to overall digestibility. Overall, BRAE incorporation demonstrated a dose-dependent reduction in starch digestibility. Physicochemical analyses reflected that BRAE incorporation decreased starch gelatinisation and increased crystallinity. Microscopic imaging revealed differentiating microstructural characteristics of starch and gluten with BRAE incorporation, supporting the reduction in digestibility. Our results conclusively demonstrate that BRAE incorporation in bread suppresses starch digestibility not only through enzyme inhibition, but also food microstructural modifications.


Assuntos
Pão , Amido , Antocianinas , Digestão , Glutens
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...